Catalytic pretreatment and hydrolysis of fibre sludge into reducing sugars

نویسندگان

  • Olli Vuolteenaho
  • Jana Holm
  • Ulla Lassi
  • Martin A. Hubbe
  • Alberto Marinas
چکیده

Decreasing oil reserves, the need to reduce CO2 emissions and increasing energy demand are issues that are forcing scientists to search for new opportunities in the field of energy. As a result, biofuels have been considered as one possible solution to solve part of these challenges. This research is one small part of that effort. For both human and economic reasons the use of edible raw materials for biofuel production is not sustainable. This study aims to convert forest industry waste, namely fibre sludge, into reducing sugars (glucose). This platform chemical can then be converted to value-added products, biofuels such as ethanol or butanol for example. Depolymerisation of fibre sludge (cellulose) to glucose monomers was performed firstly by pretreatment with ionic liquids [BMIM]Cl and [AMIM]Cl and secondly hydrolysed by acids (dilute maleic and sulphuric acids) and enzymes. To go further with the research the two pretreatment steps, dissolution and hydrolysis were combined into a one-step reaction by using a task-specific ionic liquid [SBMIM]Cl. With the ionic liquid [AMIM]Cl used for pretreatment in this study, we were able to recover 85% of sugars relative to the initial dry mass of the fibre sludge. Corresponding yield was about 30% without pretreatment. The task-specific ionic liquid [SBMIM]Cl was able to dissolve and hydrolyse fibre sludge in a one-step reaction. This ionic liquid was also able to dissolve wet fibre sludge with a moisture content of up to 50%. Enzymatic hydrolysis of [AMIM]Cl pretreated fibre sludge showed also very promising yields of reducing sugars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pretreatment of Lignocellulosic Biomass into Reducing Sugars

Lignocellulosic biomass is the most abundant renewable raw material on the earth and it is so far the most suitable and promising resource for the production of biofuels to replace long-term use of fossil oil. This research aims to convert lignocellulose-based industrial residuals, fibre sludge (FS) from a pulp mill and pine sawdust (PSD) from a sawmill, into platform sugars by two different bi...

متن کامل

Ethanol and biogas production from waste fibre and fibre sludge – The FibreEtOH concept

The FibreEtOH concept was developed to tackle major challenges in the production of ethanol from lignocellulosics. The two feedstocks, waste fibre fractionated from solid recovered fuel, and pulp and paper mill fibre sludge, provide all-year-round supply of biomass with high hexose content (44e56%) and acceptable ash content (13e14%). They can be liquefied and hydrolysed by enzymes rapidly with...

متن کامل

Optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production

The present study was conducted for the optimization of pretreatment process that was used for enzymatic hydrolysis of lignocellulosic biomass (Water Hyacinth, WH), which is a renewable resource for the production of bioethanol with decentralized availability. Response surface methodology has been employed for the optimization of temperature ((o)C), time (hr) and different concentrations of mal...

متن کامل

Genetic diversity in chestnuts of Kashmir valley

Corncob is an agriculture waste found to consist of 38.9% cellulose and 43.4% hemicellulose on dry solid (w/w %) basis and thus considered a potential source for fermentable sugars. These sugars can potentially be extracted through combined chemical pretreatment and enzymatic saccharification. The present study is aimed to optimized the pretreatment process by using variety of alkali and acids ...

متن کامل

Production of Fermentable Sugars by Combined Chemo-enzymatic Hydrolysis of Cellulosic Material for Bioethanol Production

To change the recalcitrant nature of the lignocellulosic material for maximum hydrolysis yield, a comprehensive study was done by using sulphuric acid as an exclusive catalyst for the pretreatment process. The enzymatic digestibility of the biomass [Water Hyacinth: Eichhornia crassipes] after pretreatment was determined by measuring the hydrolysis yield of the pretreated material obtained from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013